Exercises

Taylor Approximation

Exercise 1. Compute the following Taylor polynomials.

- (a) Compute $T_{2,1}(x)$ (i.e. the second (n = 2) Taylor Polynomial in the point $x_0 = 1$) for the function $f(x) = \ln(x)$.
- (b) For f(x) = sin(x) compute $T_{1,0}(x)$, $T_{2,0}(x)$, $T_{3,0}(x)$, and $T_{4,0}(x)$.
- (c) Compute $T_{3,0}$, $T_{4,0}$, $T_{5,0}$ for $f(x) = 4x^4 3x^3 + x^2 10x + 42$.
- (d) Compute $T_{2,0}$ for the function $f(x) = x \cdot e^x$.

Exercise 2. Recall that the error of the Taylor approximation is given by

$$|f(x) - T_{n,x_0}(x)| = |R_{n,x_0}(x,\xi)| = \left|\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\right|$$

for some ξ between x and x_0 .

- (a) Consider the function f(x) = cos(x).
 - (i) Compute the Taylor polynomial of third order in $x_0 = \pi$ (i.e. $T_{3,\pi}(x)$) of f.
 - (ii) Find an estimate for the error of the approximation of f with $T_{3,\pi}(x)$ for $x \in [0, 2\pi]$, i.e. show that there is some $c \in \mathbb{R}$ such that

$$|\mathsf{R}_{3,\pi}(\mathsf{x},\xi)| \leq c$$

for all $x \in [0, 2\pi]$. *Hint:* Use that $|\cos(\xi)| \le 1$.

- (b) Consider the function $g(x) = \frac{1}{1-x}$.
 - (i) Compute the Taylor polynomial of second order in x₀ = 4 (i.e. T_{2,4}(x)) of g.
 - (ii) Find an estimate for the error of the approximation of g with $T_{2,4}(x)$ for $x \in [3,5]$, i.e. show that there is some $c \in \mathbb{R}$ such that

$$|\mathsf{R}_{2,4}(\mathbf{x},\xi)| \leq c$$

for all $x \in [0, 2\pi]$. *Hint:* Use that if $x \in [3, 5]$ then $\xi \in [3, 5]$. **Exercise 3.** Consider the function $f(x) = \sqrt{1 + x}$.

- (a) Compute $T_{1,0}(x)$ and the remainder $R_{1,0}(x, \xi)$.
- (b) Use the fact $f(x) = T_{1,0}(x) + R_{1,0}(x, \xi)$ to prove that the following inequality holds for all $x \ge 0$:

$$\sqrt{1+x} \le 1 + \frac{x}{2}$$