Exercises

Taylor Approximation

Exercise 1. Compute the following Taylor polynomials.
(a) Compute $T_{2,1}(x)$ (i.e. the second $(n=2)$ Taylor Polynomial in the point $x_{0}=1$) for the function $f(x)=\ln (x)$.
(b) For $f(x)=\sin (x)$ compute $T_{1,0}(x), T_{2,0}(x), T_{3,0}(x)$, and $T_{4,0}(x)$.
(c) Compute $T_{3,0}, T_{4,0}, T_{5,0}$ for $f(x)=4 x^{4}-3 x^{3}+x^{2}-10 x+42$.
(d) Compute $T_{2,0}$ for the function $f(x)=x \cdot e^{x}$.

Exercise 2. Recall that the error of the Taylor approximation is given by

$$
\left|f(x)-T_{n, x_{0}}(x)\right|=\left|R_{n, x_{0}}(x, \xi)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right|
$$

for some ξ between x and x_{0}.
(a) Consider the function $f(x)=\cos (x)$.
(i) Compute the Taylor polynomial of third order in $x_{0}=\pi\left(\right.$ i.e. $\left.T_{3, \pi}(x)\right)$ of f.
(ii) Find an estimate for the error of the approximation of f with $T_{3, \pi}(x)$ for $x \in[0,2 \pi]$, i.e. show that there is some $c \in \mathbb{R}$ such that

$$
\left|\mathrm{R}_{3, \pi}(x, \xi)\right| \leq \mathrm{c}
$$

for all $x \in[0,2 \pi]$.
Hint: Use that $|\cos (\xi)| \leq 1$.
(b) Consider the function $g(x)=\frac{1}{1-x}$.
(i) Compute the Taylor polynomial of second order in $\mathrm{x}_{0}=4$ (i.e. $\mathrm{T}_{2,4}(\mathrm{x})$) of g.
(ii) Find an estimate for the error of the approximation of g with $T_{2,4}(x)$ for $x \in[3,5]$, i.e. show that there is some $c \in \mathbb{R}$ such that

$$
\left|R_{2,4}(x, \xi)\right| \leq c
$$

for all $x \in[0,2 \pi]$.
Hint: Use that if $x \in[3,5]$ then $\xi \in[3,5]$.

Exercise 3. Consider the function $\mathrm{f}(\mathrm{x})=\sqrt{1+x}$.
(a) Compute $T_{1,0}(x)$ and the remainder $R_{1,0}(x, \xi)$.
(b) Use the fact $f(x)=T_{1,0}(x)+R_{1,0}(x, \xi)$ to prove that the following inequality holds for all $x \geq 0$:

$$
\sqrt{1+x} \leq 1+\frac{x}{2}
$$

